	Approving it
Head of the Department	3 of Economics
	_ Neshina E. G.
11 11	2024 city of

Plan scientific research work Departments of "Energy Systems" for 2024-202–2025 academic year

<i>№</i> n /	a Activities	Completion dates	Responsible executor	Mark of
	completion R& D implementation: 1.1 Development of an intelligent fiber-optic system for monitoring the geotechnical state of mine workings of quarries and open-pit mines 1.1.1 development of an algorithm for the operation of an	November 2024	Neshina EG	
	intelligent hardware and software complex of the monitoring system; 1.1.2 preparation for laboratory tests of a fiber-optic sensor to determine optimal parameters;	December 2024		
	1.1.3 development of a sensor control code in the Python programming language version 3.11;1.1.4 conducting tests on a computer model;1.1.5 making a report;	March 2025		
	5.5.0 5.5.0.0 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1 5.5.1	May 2025		
		June 2025		
	 2 Development and research of a model of alternative fuel cells of hydrogen energy based on high-temperature proton conductors. 1.2.1 Analysis of existing experimental and theoretical 		Kalytka V. A.	
1.	methods and results of studying the conductivity of solid electrolytes based on high-temperature proton conductors (HPP). Determination of directions for further research of the properties of electrolytic materials based on RUNWAY.	november- December 2024		
	1.2.2 Development of a physical and mathematical model of electric charge transfer in solid electrolytes based on hydrogen-bonded crystals (HCS) in the high-temperature range in the region of weak electric fields. 1.2.3 Experimental investigation of the mechanism of electric charge transfer in solid electrolytes based on KVS. Measurement of the KVS thermal conductivity current spectra in the AC field frequency range of 1 kHz-	december 2024-February 2025		
	10 MHz. Mathematical processing of measurement results. 1.2.4 Development of an algorithm for computer calculation of the crystal lattice and EMF parameters for a model fuel cell based on high-temperature proton conductors (TPP). 1.2.5 Development and implementation of methods for automatic control of electrical characteristics of a model fuel cell based on a runway.	February-April 2025		
		May 2025		

		June 2025	
-	1. 3 Reducing the energy intensity of industrial	3 tille 2023	
	production		Balandin V. S.
	1.3.1 Analysis of energy efficiency of industrial	November	
	enterprises	2024	
	1.3.2 Development of a set of measures to reduce energy		
	intensity and improve the energy efficiency of industrial	December	
	enterprises	2024-March	
	1.3.3 Estimation of payback period and reduction of	2025	
	production costs		
	1.3.4 Preparation of the report		
		May 2025	
-		June 2025	
	1. 4 Creation of an experimental industrial sample of an		Taranov A.V.
	innovative passenger air lift for buildings and structures		
	1.4.1 Development of design and development of	October 2024	
	experimental and industrial samples of multi-storey passenger air lift	OCTOBEL 2024	
	1.4.2 Development of technological documentation of		
	pilot designs of multi-storey passenger air lift	November-	
	1.4.3 Development of stop devices for stopping the cab	December	
	on the corresponding floor and the design of cab doors	2024	
	and doors on floors with sealing elements		
	1.4.4 Research, search and selection of materials for	February-	
	sealing devices	March 2025	
	1.4.5 Preparation of the report		
	•		
		April-June	
		2025	
		May 2025	
	Publication of R	During the	
	2.1 & Dresults Preparation of articles and monographs	academic year	•
	SA-1		Kalytka V. A.
2	Scopus article -3 articles		Isaev V. L.
2.	KOKSON VO-4 statisticsьи		Neshina E. G.
	of the Monograph – 1 3.2 Participation in conferences-20 reports		Teaching staff
	5.2 I articipation in conferences-20 reports		of the
			Department
	Inventive activity.	During the	Neshina E. G.
	Submission of 5 applicationsok for a patent	academic year	Teaching staff
3.	Submission of 5 applicationsok for a copyright	Julius your	of the
	certificate		Department
	International Activities	Duringthe the	Neshina E. G.
	Cooperation with professors of Universities of far and	academic year	Taranov A.V.
	near abroad for joint publications in peer-reviewed		
	journals included in the Scopus and Web of Science		
	databases:		
4.	1. Research Institute of TPU, Galtseva O. N.		
	(Russian Federation)		
	2. Research Institute of TPU, Yurchenko A.V.		
	(Russian Federation)		
	3. Research Institute of TPU, L. A. Alkaderi		
	(Russian Federation)		

5	Scientific research work with students	according	to the NIRS plan Brazhanova D. K.
6	Work with enterprises of the corporate university	According to the KU plan	

Head of NIL

Brazhanova D. K.