АННОТАЦИЯ

диссертации на соискание ученой степени доктора философии PhD по специальности: 6D070700 – «Горное дело»

Суимбаевой Айгерим Маратовны

Геотехнологические исследования по обоснованию параметров устойчивости массива горных пород при комбинированной отработке (на примере Акжальского месторождения)

Актуальность исследований. В последнее время в Казахстане ряд крупных рудных месторождений разрабатываются комбинированным способом – с переходом от открытых к подземным способам разработки. При таком способе разработки месторождений приконтурная часть массива подвергается многократному воздействию нагрузок от открытых и подземных работ, что приводит к осложнению состояния массива под влиянием различных факторов, которые постоянно развиваются в пространстве и во времени.

В настоящее время рудник Акжал ведет отработку запасов свинцовокомбинированным способом системой подэтажного обрушения. В дальнейшем, согласно проекту промышленной разработки месторождения «Акжал», планируется полный переход на подземную отработку запасов, поэтому большой научный и практический интерес представляют задачи, связанные c обеспечением устойчивости подготовительных и капитальных выработок при отработке подкарьерных запасов.

Обеспечение устойчивости массива горных пород при различных горногеологических характеристиках руд и вмещающих пород в быстро меняющейся горнотехнической ситуации требует применения научно обоснованной методики прогноза состояния напряженно-деформированного массива горных пород. Успешное решение вопросов геомеханического обоснования параметров устойчивости массива горных пород должно обеспечить эффективность и безопасность ведения горных работ.

Для решения данной задачи необходима комплексная геомеханическая оценка напряженно-деформированного состояния подкарьерного массива с учетом физико-механических особенностей и структурных свойств вмещающих пород и влияния подготовительных и очистных выработок.

Задача геомеханического обоснования параметров устойчивости массива горных пород с учетом структурных особенностей на сегодняшний день в методическом отношении имеет несколько решений, но основная сложность в методике оценки влияния трещиноватости на свойства породного массива связана с трудностями комплексного учета горногеологических факторов, отсутствием научно обоснованного соотношения между лабораторными результатами испытаний прочности горных пород и прочностным характеристикам массива.

В мировой практике проектирования и строительства подземных сооружении рудных месторождении, которые разрабатываются комбинированным способом, оценка геомеханического состояния массива производится с учетом рейтинговых классификаций с применением методов численного моделирования. В последнее время и в нашей стране такие методики оценки устойчивости горного массива стали использоваться при проектировании и строительстве горных выработок.

Таким образом, геомеханическое обоснование параметров устойчивости массива горных пород, позволит прогнозировать поведение, окружающего техногенные обнажения породного массива при комбинированной отработке, что является актуальной научной и практической задачей.

Целью диссертационной работы является обоснование параметров устойчивости техногенных обнажений на основе структурных особенностей горных пород с применением методов численного моделирования и оценка геомеханического состояния массива на основе комплексных геотехнологических исследований.

Для достижения поставленной цели были определены следующие задачи:

- анализ существующих методов исследования НДС массива горных пород и способов учета степени влияния трещиноватости на устойчивость техногенных обнажений. Определение границ применимости современных методов оценки устойчивости массива горных пород на основе рейтинговых показателей;
- проведение лабораторных испытаний по определению предела прочности горных пород на одноосное сжатие;
- проведение комплексных натурных исследований для определения значения геологического индекса прочности (GSI) горных пород;
- подготовке исходных данных для численного анализа в соответствии с рейтинговыми классификациями горных пород;
- проведение численного моделирования для оценки устойчивости массива горных пород и влияния ширины дна карьера на напряженно-деформационное состояние подкарьерного массива.

Идея работы заключается в обосновании параметров устойчивости подкарьерной части массива с использованием геологического индекса прочности горных пород (GSI), определяемого на основе геотехнологических исследований.

Объектом исследования является массив горных пород вблизи подкарьерной части месторождения полезных ископаемых.

Методы исследований. При выполнении работы использовалась комплексная методика исследований, включающая анализ литературных источников, результаты лабораторных экспериментов, выполненных специализированными организациями, натурные исследования по определению геологического индекса прочности, численное моделирование геомеханических процессов, протекающих в подкарьерном массиве.

Научные положения, выносимые на защиту:

- численный анализ напряженно-деформированного состояния горных пород с учетом геологического индекса прочности (GSI) позволяет количественно оценить геомеханическое состояние подкарьерного массива при комбинированной отработке;
- изменения главных наибольших напряжений в приконтурной части выработок, расположенных в подкарьерном массиве, зависят от расстояния до дна карьера по нелинейной зависимости;
- увеличение ширины дна карьера приводит к уменьшению зоны концентрации растягивающих напряжений в потолочине очистного блока.

Научная новизна диссертационной работы заключается:

- в обосновании параметров устойчивости подкарьерной части массива на основе комплексной оценки геомеханического состояния горных пород при комбинированной разработке;
- в получении зависимостей величин горизонтальных напряжений в подкарьерном массиве от ширины дна карьера;
- в установлении зависимости изменения в подкарьерной части массива главных напряжений от дна карьера до контура горной выработки путем адаптации геологического индекса прочности GSI к горно-геологическим условиям Акжальского месторождения.

Практическая значимость работы:

- в оценке напряженно-деформационного состояния массива на основе системы оценки качества горных пород с использованием результатов геотехнологических исследований путем численного моделирования;
- обоснованы параметры устойчивости техногенных обнажений для безопасного ведения горных работ при отработке подкарьерных запасов свинцово-цинковых руд месторождения Акжал.

Обоснованность и достоверность научных положений.

Обоснованность и достоверность научных положений подтверждаются использованием хорошо апробированного и широко применяемого в мировой практике геомеханических расчетов классификацией Хоека-Брауна на основе геологического индекса прочности GSI, анализом и обработкой большого объема данных, полученных в результате лабораторных и шахтных исследовании.

Реализация результатов работы в промышленности. Результаты исследований напряженно-деформированного состояния массива горных пород и определения параметров устойчивости техногенных обнажений на основе систем оценки качества горных пород с применением методов численного моделирования были использованы при оценке геомеханического состояния горных пород в приконтурной части выработок горизонта +505 м и +545 м подземного рудника «Акжал».

Личный вклад автора состоит:

- в постановке задачи научно-исследовательских работ;
- в проведении лабораторных испытаний образцов горных пород для определения предела прочности на одноосное сжатие;

- в проведении шахтных исследований по определению качества горных пород (RQD) и съемке трещиноватости;
- в подготовке исходных данных для численного анализа в соответствии с рейтинговыми классификациями горных пород;
- в выявлении закономерностей и установлении зависимостей изменения параметров устойчивости техногенных обнажений;
- в обосновании параметров устойчивости подкарьерного массива на основе систем оценки качества горных пород с применением методов численного моделирования.

Апробация работы. Основные положения докторской диссертаций докладывались и были обсуждены на международных научно-практических конференциях и форумах: «International University Science Forum. Practice, science and education», г. Торонто (Канада), 2020 г., «Инновационные геотехнологии при разработке рудных и нерудных месторождений», г. Екатеринбург (Россия), 2018 г., «Интеграция науки, образования и производства — основа реализации Плана нации», г. Караганда (Сагиновские чтения №10, 11, 12) 2018-2020 гг.

Публикация работы. Основные положения работы опубликованы в 12 печатных работах, из них 1 статья, опубликованная в журнале, входящем в базу Clarivate Analytics, 1 статья, опубликованная в журнале, входящем в базу Scopus, 2 статьи, опубликованные в журналах, входящих в Перечень рекомендованных изданий КОКСОН, 6 тезисов докладов и 2 свидетельства о внесении сведений в государственный реестр прав на объекты, охраняемые авторским правом.

Структура и объем работы. Диссертация состоит из введения, пяти разделов и заключения (выводов), содержит 128 страниц печатного текста и списка использованных источников из 163 наименований.